便携式大语言模型才是智能手机的未来

本文最初发布于 The Register 博客。

智能手机的创新已经停滞。不久前发布的 iPhone 15 确实带来了一些不错的功能。但在一段时间内,我的 iPhone 13 还是可以满足我的需求,我不会急于更换。我之前的 iPhone 用了四年。

在这款手机之前,我有充分的理由购买来自库比蒂诺的年度升级版本。但现在,我们能从中得到什么呢?iPhone 15提供了 USB-C 接口、更好的摄像头和更快的无线充电。这些功能都很好,但对大多数用户来说却并不是必需的。

然而,鉴于目前近乎疯狂的人工智能创新浪潮,智能手机很快也会变得更好。

几乎每个拥有智能手机的人都可以通过 App 或浏览器访问“三大”人工智能聊天机器人——OpenAI 的 ChatGPT、微软的 Bing Chat 和谷歌的 Bard。

这已经很好了。不过,除了这些“通用”人工智能聊天机器人之外,一项由另一家大型科技巨头牵头的秘密工作似乎正在占据上风。

早在 2 月份,Meta AI Labs 就发布了LLaMA——这是一个训练数据集和参数数量都变小了的大型语言模型。对于大型语言模型的工作原理,我们在直觉上还是会将其与更多的参数和更大的容量等同起来——例如,人们认为 GPT-4 有一万亿甚至更多的参数,尽管 OpenAI 对这个数字守口如瓶。

Meta 的 LLaMA 只有区区 700 亿个参数,甚至有一个版本只有 70 亿个。

那么,是不是说 LLaMA 只有 GPT-4 的千分之一呢?这就是有趣的地方。虽然 LLaMA 从来没有在任何基准测试中击败过 GPT-4,但它并不差——在许多情况下,它已经不是一般的好了。

LLaMA 是按 Meta 的方式开源的,研究人员可以使用其工具、技术来训练模型并迅速作出显著的改进。仅仅在几周之内,就出现了Alpaca、Vicuna 等大型语言模型,每一个都优化得比 LLaMA 还好——同时,在基准测试中也和 GPT-4 越来越接近。

当 Meta AI 实验室在 7 月份发布LLaMA2的时候——许可不再那么以 Meta 为中心——成千上万的 AI 程序员开始针对各种用例对它进行调整。

Meta AI 实验室自己也不甘落后,他们几周前发布了自己的微调版本Code LLaMA——内嵌到 IDE 中提供代码补全功能,或者简单地提供分析和修复代码。此后两天之内,一家名为Phind的初创公司就将 Code LLaMA 优化为一个可以在单项基准测试中击败 GPT-4 的大型语言模型。

这是第一次,算是对OpenAI、微软和谷歌的一次警告。看似“微小”的大型语言模型也可以足够好,同时还足够小,不必在飞机机库大小的云计算设施中运行,不用像那样消耗大量的电力和水资源。相反,它们可以在笔记本电脑甚至智能手机上运行。

不是理论上可以。几个月来,我一直在 iPhone 13 上运行MLC聊天应用。它运行有着 70 亿个参数的 LLaMA2 模型并没有什么问题。这个迷你模型不如有着 130 亿个参数的 LLaMA2 模型亮眼(但我的智能手机没有足够的内存来容纳它),但它在尺寸和性能之间做了很好的平衡。

iPhone 15 也没有——尽管苹果的规格说明书省略了有关 RAM 的细节信息。

这些面向个人的大型语言模型——在私有设备上运行——将很快成为智能手机操作系统的核心功能。它们会获取你所有的浏览数据、活动和医疗数据,甚至是财务数据——所有我们今天交给云计算用来对付我们的数据——它们会不断改进自己,更准确地体现我们的精神、身体和财务状况。

它们会咨询,会鼓励,会警告。它们不会取代大量的通用模型,但它们也不会将我们所有的个人数据泄露到云端。大多数智能手机已经有足够的 CPU 和 GPU 来运行这些面向个人的大型语言模型,但它们需要更多的 RAM。只要多一点内存,我们的智能手机就能变得更加智能。

原文链接:https://www.theregister.com/2023/09/13/personal_ai_smartphone_future/?td=rt-3a

本文文字及图片出自 InfoQ

余下全文(1/3)
分享这篇文章:

请关注我们:

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注